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Abstract
We present four variational principles for the electric and magnetic
polarizabilities for a structure consisting of anisotropic media with perfect
electric conductor (PEC) inclusions. From these principles, we derive
monotonicity results and upper and lower bounds on the electric and magnetic
polarizabilities. When computing the polarizabilities numerically, the bounds
can be used as error bounds. The variational principles demonstrate important
differences between electrostatics and magnetostatics when PEC bodies are
present.

PACS numbers: 41.20.Cv, 41.20.Gz, 03.50.De, 11.80.Fv

1. Introduction

Variational principles can be viewed as a physical way of interpreting mathematical equations.
Instead of giving the relevant physical law as, for instance, a partial differential equation, a
variational principle typically defines an energy functional, where the correct physical behavior
is obtained for the trial function giving the minimum value of the functional. Typically, the
functional can be interpreted as the energy of the system.

In our case, we are interested in calculating the electric and magnetic polarizabilities
of a system consisting of anisotropic permittivity and permeability, possibly containing
inclusions of metal modeled as a perfect electric conductor (PEC). This can be used in
various applications, for instance Rayleigh scattering [1–4], where the size of the scatterer
is small compared to the wavelength and hence the induced electric and magnetic dipole
moments give the main contributions to the scattered wave amplitude. Another important
case is homogenization theory for composite materials [5–7], where it is assumed that all
inhomogeneities in a material appear on a scale much smaller than the wavelength. The result
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is that the effective material properties, which are observable on the wavelength scale, can
be determined from the polarizability per unit volume. As a final example of applications,
there has recently been a series of publications proposing the use of electric and magnetic
polarizabilities to give physical bounds on electromagnetic interaction over all frequencies
for antennas, materials and general scatterers [8–12]. For instance, in the case of scattering
theory, the bounds state that the extinction cross section of any scatterer integrated over all
wavelengths is bounded by a constant multiplied by the sum of the electric and magnetic
polarizabilities of the scatterer, no matter how complicated the geometry or material of the
scatterer is [8]. In the antenna case, essentially the same result holds if the extinction cross
section is replaced by the partial realized gain of the antenna [9]. The common factor for
all the applications mentioned is that important physical properties depend directly on the
polarizabilities of the system. The results in this paper demonstrate how these numbers can
be calculated or bounded using variational principles.

Electrostatics is one of the prime examples of the Laplace equation, and has thus been
studied thoroughly. Magnetostatics is somewhat younger, but due to its large financial impact
on, for instance, power transformers and hard disk drives, it has also received significant
attention [13–15]. A classical problem directly linked to ours is to compute low frequency
circuit parameters such as capacitance and inductance [16–19]. It is interesting to note that the
problem of magnetic polarizability of a PEC body is mathematically equivalent to the problem
of computing the virtual mass [20, p 31] of a body in a uniformly flowing fluid [21–23].

Even though variational principles are typically associated with a self-adjoint operator, we
note that in some cases there exist techniques for reformulating the problem so that variational
principles can be found for, for instance, complex-valued non-Hermitian matrices describing
material properties [24]. However, in this paper we assume that all material properties can be
modeled using symmetric, real-valued matrices.

This paper is organized as follows. In section 2, we state the geometry of our problem.
In section 3 we summarize the variational principles, two of which are explicitly verified in
appendix A. In section 4, it is shown that these principles imply monotonicity results for the
polarizabilities. The variational principles are interpreted as giving upper and lower bounds
for the polarizabilities in section 5, and a numerical illustration is given in section 6. Finally,
some conclusions are given in section 7.

2. Geometry and statement of the problem

We consider the situation of a structure as in figure 1 with anisotropic permittivity and
permeability matrices ε(x) and μ(x) and possibly PEC inclusions in a region � with volume
V�, such that R

3 \� is simply connected. The structure is surrounded by vacuum with
permittivity ε0 = ε0I and permeability μ0 = μ0I. The structure is subjected to a homogeneous
electric field and a homogeneous magnetic field. The induced redistribution of charges and
currents in the structure gives rise to an electric and magnetic dipole moment according to
(where n̂ is the outward normal vector)

p =
∫

R3\�
(ε − ε0)E dV +

∮
∂�

xn̂ · D dS (1)

m =
∫

R3\�

(
μ−1

0 − μ−1
)
B dV +

1

2

∮
∂�

x × (n̂ × H) dS, (2)
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Figure 1. Typical geometry of the structure considered.

where E, D,B and H are the full electric field strength, electric flux density, magnetic flux
density and magnetic field strength, respectively. The electric and magnetic polarizabilities
are defined by

p = ε0γeE0 = γeD0 (3)

m = μ−1
0 γmB0 = γmH0, (4)

where we used the fact that in the surrounding medium, we cannot distinguish between the
applied electric field strength E0 and the flux density D0, since these are related by D0 = ε0E0.
The same reasoning applies for the magnetic fields.

Even though the problem is primarily stated for finite structures in a three-dimensional
space, the final formulation of the variational principles also admits periodic solutions, where
for instance the finite structure in figure 1 is repeated periodically without the PEC portion
of the copies touching each other. The only thing needed is a natural reformulation of the
function spaces.

3. Summary of variational principles

The variational principles can be derived from the static Maxwell’s equations by representing
the fields using either scalar or vector potentials and constructing natural quadratic forms.
Starting from the variational principles themselves, we show in appendix A how it can be
verified that the minimizing potentials satisfy the static Maxwell’s equations. The variational
principles along with the associated classes of admissible potentials are as follows. Using
scalar potential ϕ for the electric field,

Je(ϕ, E0) =
∫

R3\�
∇ϕ · ε∇ϕ dV − 2

∫
R3\�

∇ϕ · (ε − ε0)E0 dV

+ E0 ·
[∫

R3\�
(ε − ε0) dV + V�ε0

]
· E0 (5)

Aϕ = {ϕ ∈ H1(R
3 \ �); n̂ × (E0 − ∇ϕ) = 0 on ∂�}. (6)

3
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Using vector potential F for the electric field,

Ke(F , D0) =
∫

R3\�
(∇ × F ) · ε−1∇ × F dV − 2

∫
R3\�

(∇ × F ) · (
ε−1

0 − ε−1)D0 dV

−2D0 · ε−1
0

∮
∂�

xn̂ · (D0 + ∇ × F ) dS + D0 ·
[
−

∫
R3\�

(
ε−1

0 − ε−1
)

dV + V�ε−1
0

]
D0

(7)

AF = {F ∈ H1(curl, R
3\�); n̂ × ε−1(D0 + ∇ × F ) = 0 on ∂�}. (8)

Using scalar potential ψ for the magnetic field,

Jm(ψ,H0) =
∫

R3\�
∇ψ · μ∇ψ dV − 2

∫
R3\�

∇ψ · (μ − μ0)H0 dV

+ 2H0 · μ0

2

∮
∂�

x × (n̂ × (H0 − ∇ψ)) dS + H0 ·
[∫

R3\�
(μ − μ0) dV + V�μ0

]
H0 (9)

Aψ = {ψ ∈ H1(R
3\�); n̂ · μ(H0 − ∇ψ) = 0 on ∂�}. (10)

Using vector potential A for the magnetic field,

Km(A,B0) =
∫

R3\�
(∇ × A) · μ−1∇ × A dV − 2

∫
R3\�

(∇ × A) · (μ−1
0 − μ−1

)
B0 dV

+ B0 ·
[
−

∫
R3\�

(
μ−1

0 − μ−1
)

dV + V�μ−1
0

]
B0 (11)

AA = {A ∈ H1(curl, R
3\�); n̂ · (B0 + ∇ × A) = 0 on ∂�}. (12)

The minimum values of these functionals are given by

min
ϕ∈Aϕ

Je(ϕ, E0) = Je(ϕ0, E0) = E0 · p = ε0E0 · γeE0 (13)

min
F∈AF

Ke(F , D0) = Ke(F 0, D0) = −D0 · ε−1
0 p = −ε−1

0 D0 · γeD0 (14)

min
ψ∈Aψ

Jm(ψ,H0) = Jm(ψ0,H0) = H0 · μ0m = μ0H0 · γmH0 (15)

min
A∈AA

Km(A,B0) = Km(A0,B0) = −B0 · m = −μ−1
0 B0 · γmB0, (16)

where the minimizing potentials (ϕ0,F 0, ψ0,A0) satisfy the electrostatic and magnetostatic
equations

∇ · D = ∇ · [ε(E0 − ∇ϕ0)] = 0 (17)

∇ × E = ∇ × [ε−1(D0 + ∇ × F 0)] = 0 (18)

∇ · B = ∇ · [μ(H0 − ∇ψ0)] = 0 (19)

∇ × H = ∇ × [μ−1(B0 + ∇ × A0)] = 0. (20)

We call Je(ϕ, E0) and Km(A,B0) the direct functionals, since they are associated with the
natural potentials for electric and magnetic fields. For these potentials, the boundary values
can be written in terms of the exciting fields as ϕ = E0 · x (possibly plus a constant scalar)
and A = 1

2x × B0 (possibly plus a constant vector). The boundary values of the potentials
in the functionals Ke(F , D0) and Jm(ψ,H0) cannot as easily be expressed in terms of the
exciting fields, and we call them the dual functionals. In principle, the direct functionals can

4
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be seen as problems with Dirichlet boundary conditions and the dual functionals as problems
with Neumann boundary conditions.

An interesting difference between the direct functionals and the dual functionals is that
the dual functionals include a term which is the scalar product of the applied field and (twice)
the induced dipole moment in the PEC body. In the electric case this term is minimized
when the dipole moment is parallel with the applied field, whereas in the magnetic case the
term is minimized when the dipole moment is antiparallel to the applied field. This expresses
a fundamental difference in sign for the PEC polarizability for electric and magnetic fields.
This is further explored in the following section.

4. Monotonicity of the polarizabilities

Consider a situation with two different PEC bodies, � and �′, where �′ ⊆ � and δ� = �\�′.
Associated with � and �′ are also the permittivity functions ε(x) and ε′(x) and permeability
functions μ(x) and μ′(x), respectively. The spaces of admissible test functions are slightly
different, since the boundary conditions are not the same. However, for each ϕ ∈ Aϕ , we can
choose ϕ′ ∈ A′

ϕ′ such that ϕ′ = ϕ in the exterior of � and ϕ′ = x · E0 (possibly adding a
constant) in δ�, i.e. E0 − ∇ · ϕ′ = 0 in δ�. Also, for each A ∈ AA, we can choose A′ ∈ A′

A′

such that A′ = A in the exterior of � and A′ = 1
2x × B0 (possibly adding a constant vector)

in δ�, i.e. B0 + ∇ ×A′ = 0 in δ�. This construction can only be applied to the test functions
for the direct functionals Je and Km and not the dual functionals Ke and Jm. Using the results
from (A.8) and (A.20), we then have (for arbitrary ϕ ∈ Aϕ and A ∈ AA)

Je(ϕ, E0) − J ′
e(ϕ

′, E0) =
∫

R3\�
(E0 − ∇ϕ) · (ε − ε′)(E0 − ∇ϕ) dV (21)

Km(A,B0) − K ′
m(A′,B0) =

∫
R3\�

(B0 + ∇ × A)(μ−1 − (μ′)−1)(B0 + ∇ × A) dV. (22)

Using the minimizing potentials ϕ0 and A0 for the unprimed functionals, we obtain the
inequalities, valid for any �′ ⊆ �,

ε0E0 · (γe − γ ′
e)E0 �

∫
R3\�

(E0 − ∇ϕ0) · (ε − ε′)(E0 − ∇ϕ0) dV (23)

μ−1
0 B0 · (−γm + γ ′

m)B0 �
∫

R3\�
(B0 + ∇ × A0)(μ

−1 − (μ′)−1)(B0 + ∇ × A0) dV. (24)

In the following, an inequality between two matrices is understood as an inequality valid for
all quadratic forms over the matrices, i.e. by ε � ε′ we mean E0 ·εE0 � E0 ·ε′E0 for all E0. If
ε � ε′ and μ−1 � (μ′)−1 (equivalent to μ′ � μ), it is then seen that the right-hand sides of (23)
and (24) are nonnegative, and hence we must have γe � γ ′

e if ε � ε′ and γ ′
m � γm if μ′ � μ.

This proves that both the electric and the magnetic polarizabilities are nondecreasing when the
material parameters increase in the region exterior to �. If the material parameters are equal
in the region exterior to both volumes, i.e. ε = ε′ and μ = μ′ in the region exterior to �, the
right-hand sides of (23) and (24) are zero, and it is seen that γe � γ ′

e and γm � γ ′
m for arbitrary

�′ ⊆ �. Thus, when the region of PEC increases from �′ to �, the electric polarizability
is nondecreasing, but the magnetic polarizability is nonincreasing. A corresponding result is
shown for isotropic dielectric bodies in [4].

When the structure consists of only PEC in vacuum, i.e. ε = ε0 and μ = μ0 everywhere,
the minimum properties (13) and (16) imply

ε0E0 · γeE0 = ε0

∫
R3\�

|∇ϕ0|2 dV + ε0V�|E0|2 (25)

5
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− μ−1
0 B0 · γmB0 = μ−1

0

∫
R3\�

|∇ × A0|2 dV + μ−1
0 V�|B0|2. (26)

Since the right-hand sides of these equations are positive, it is readily seen that the electric
polarizability for PEC bodies in vacuum is positive, whereas the magnetic polarizability is
negative. It is also seen that the amplitude of the polarizability in each case is always larger
than the volume of the PEC body. When embedding PEC bodies in a magnetic material, there
is an interplay where the PEC properties promote negative polarizability, whereas the material
properties promote positive polarizability if μ � μ0. A precise example is given by a PEC
sphere of radius a, surrounded by a spherical layer with isotropic permeability μ and outer
radius b. It can be shown that the total magnetic polarizability of this structure is zero if(a

b

)3
= 2(μ/μ0 − 1)

2μ/μ0 + 1
= 1 − 3

2μ/μ0 + 1
. (27)

If (a/b)3 is larger than this value, the polarizability is negative, and if it is smaller, the
polarizability is positive. In homogenization theory, inclusions with zero polarizability are
called neutral [6, pp 134–9] and are typically constructed from layered spheres as this one.

5. Upper and lower bounds on the polarizabilities

Using the variational formulations, we can find upper and lower bounds for the polarizabilities
by inserting any set of admissible trial potentials (ϕ,F , ψ,A) in the inequalities

− Ke(F , D0) � ε0E0 · γeE0 � Je(ϕ, E0) (28)

− Km(A,B0) � μ0H0 · γmH0 � Jm(ψ,H0), (29)

where the applied fields are related by D0 = ε0E0 and B0 = μ0H0. Using for instance
the finite element method (FEM) for solving the field equations, we can compute each
functional and consider the numerical potentials as trial fields. Each set of numerical potentials
(ϕnum,F num, ψnum,Anum) can then be inserted in inequalities (28) and (29), which provides
a strict error bound for the numerical computation of the polarizabilities. A corresponding
interpretation of variational bounds in homogenization theory can be found in [25].

When there are no PEC bodies, the zero potentials are admissible in inequalities (28) and
(29), implying

D0 ·
∫

R3

(
ε−1

0 − ε−1
)

dV D0 � ε0E0 · γeE0 � E0 ·
∫

R3
(ε − ε0) dV E0 (30)

B0 ·
∫

R3

(
μ−1

0 − μ−1
)

dV B0 � μ0H0 · γmH0 � H0 ·
∫

R3
(μ − μ0) dV H0. (31)

This states that the polarizabilities are bounded by the harmonic and arithmetic mean of the
material parameters. In homogenization theory, this is known as the Wiener bounds [26].

From the monotonicity results in the previous section, it can be concluded that if we have
a set of PEC regions included in each other, �′ ⊆ � ⊆ �′′, then we have

γ ′
e � γe � γ ′′

e (32)

− γ ′
m � −γm � −γ ′′

m (33)

if the material parameters ε(x) and μ(x) are identical in each case. If the polarizability can
be computed for the regions �′ and �′′, this leads to bounds for the unprimed polarizability.
For instance, for PEC spheres in vacuum, it is easy to show that

γe = 4πa3I = 3V I, γm = −2πa3I = − 3
2V I, (34)

6
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where V is the volume of the sphere. For an arbitrary PEC region � in vacuum, we can then
formulate the bounds [21]

3V ′I � γe � 3V ′′I (35)

3V ′/2I � −γm � 3V ′′/2I, (36)

where V ′ is the volume of the largest sphere contained in the body and V ′′ is the volume
of the smallest sphere containing the body. This result can be generalized to shapes such as
ellipsoids.

6. Numerical example

To demonstrate the upper and lower bounds provided by the variational principles, we consider
the case of a PEC sphere in vacuum. For an axially symmetric structure, we can reduce the
problem to two dimensions using cylindrical coordinates, since the solution cannot depend on
the azimuth angle φ. The vector potentials are also reduced to a single φ-component, which
can be seen by considering the curl (where r =

√
x2 + y2 is the cylindrical radius)

∇ × F = r̂

(
1

r

∂Fz

∂φ
− ∂Fφ

∂z

)
+ φ̂

(
∂Fr

∂z
− ∂Fz

∂r

)
+ ẑ

(
1

r

∂

∂r
(rFφ) − 1

r

∂Fr

∂φ

)

= −r̂
∂Fφ

∂z
+ ẑ

1

r

∂

∂r
(rFφ), (37)

where we enforced the symmetry conditions that the potential should be independent
of φ and the curl should not have a φ-component. The field equation in vacuum is
∇ × (D0 + ∇ ×F )= 0, and since D0 is constant we have

∇ × (∇ × F ) = −φ̂

[
∂2Fφ

∂z2
+

∂

∂r

(
1

r

∂

∂r
(rFφ)

)]
= 0. (38)

The field equation for the scalar potential in vacuum is ∇ · (E0 − ∇ϕ) = 0, implying the
φ-independent Laplace equation since E0 is constant:

∇2ϕ = 1

r

∂

∂r

(
r
∂ϕ

∂r

)
+

∂2ϕ

∂z2
= 0. (39)

The corresponding equations for the magnetic potentials A and ψ follow analogously. To
summarize, the scalar and vector potentials satisfy the following differential equations and
associated boundary conditions on the PEC surface (assuming that all exciting fields are
directed along the z-direction)

1

r

∂

∂r

(
r
∂ϕ

∂r

)
+

∂2ϕ

∂z2
= 0, ϕ = E0z (40)

∂

∂r

(
1

r

∂(rFφ)

∂r

)
+

∂2Fφ

∂z2
= 0, n̂ ×

[
−r̂

∂Fφ

∂z
+ ẑ

1

r

∂

∂r
(rFφ)

]
= −D0n̂ × ẑ (41)

1

r

∂

∂r

(
r
∂ψ

∂r

)
+

∂2ψ

∂z2
= 0, n̂ ·

[
r̂

∂ψ

∂r
+ ẑ

∂ψ

∂z

]
= H0n̂ · ẑ (42)

∂

∂r

(
1

r

∂(rAφ)

∂r

)
+

∂2Aφ

∂z2
= 0, Aφ = −1

2
B0r. (43)

These equations are easily solved using finite element software such as Comsol Multiphysics,
and we can compute the functionals Je,Ke, Jm and Km using different discretizations. Even

7
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Figure 2. Demonstration of how numerical computations of the functionals provide bounds for
γe and γm. The functionals are normalized by the exact values of γe and γm given by (34). Solid
lines are for the electric case and dashed lines are for the magnetic case. The data points are for a
PEC sphere with radius 1, centered in a computational cubic region with side 20 (left) or 40 (right).
The horizontal scale corresponds to the discretization used in a 2D axial symmetric geometry (only
orders of magnitude given, the numbers are slightly different for left and right figure): 200, 800,
3000, 12 000, 50 000 and 200 000 elements, respectively. The calculations are made with the
commercial software Comsol Multiphysics 3.4 (http://www.comsol.com).

though the computations are necessarily performed in a finite computational domain D, the
resulting numerical potentials are still admissible for an infinite domain if we require the fact
that the potentials are zero on the boundary ∂D, and extend them to zero-valued functions on
R

3\D.
Each of the numerical computations provides a new bound for the polarizabilities, and in

figure 2 we show how the bounds become progressively narrower as the discretization is made
finer. The simulations are for a PEC sphere with radius 1, centered in a computational region
in the shape of a cube with side 20 (left figure) or 40 (right figure). It is seen that the bounds
level out after only a few refinements of the grid. The upper and lower bounds end up closer to
each other for the larger computational region, which is due to the numerical potentials being
better approximations to the free space potentials. In all cases, we have a strict bound on the
polarizability.

When the bounds level out, the numerical solution has converged. In this respect, the
only remaining error in the calculation of the polarizabilites is due to the modeling error
in introducing a finite computational region. Thus, the variational principles also provide a
means of determining the modeling error.

7. Conclusions

We have presented four variational principles from which the electric and magnetic
polarizabilities can be computed or estimated. The polarizabilities are characterized as minima
and maxima of these functionals, providing strict error bounds when applying numerical
methods to compute the polarizabilities. Similar functionals have been presented before,
and the purpose of this paper is to give a unified presentation of anisotropic permittivity
and permeability in combination with PEC inclusions and to point out essential differences
between electric and magnetic fields. The variational principles are valuable tools to estimate
or bound the static polarizabilities, which showed up as important entities in recent work on

8
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physical limitations on the interaction between the electromagnetic field and linear, passive,
causal structures such as antennas, materials and general scatterers [8–12].

The variational principles display important similarities and differences between electric
and magnetic fields. If there are no PEC bodies present, there is a direct analogy between the
functionals for the electric and magnetic cases, making them formally identical to each other.
However, when a PEC body is introduced, the fields satisfy different boundary conditions on
the PEC surface, which leads to different variational principles for the electric and magnetic
cases, respectively. Specifically, the magnetic polarizability of a PEC body is negative,
whereas the electric polarizability is positive. It is observed that in the electric case the
boundary conditions are most easily expressed using a scalar potential, whereas the vector
potential is most convenient in the magnetic case.

Appendix A. Verification of the variational principles for electric polarizability

In this appendix, we verify that the minimizing potentials for the direct and dual variational
principles for the electric polarizability do indeed satisfy the electrostatic equations and that the
minimum values correspond to the polarizability. The variational principles for the magnetic
case can be shown in the same way.

Appendix A.1. Direct variational principle

The direct functional is

Je(ϕ, E0) =
∫

R3\�
∇ϕ · ε∇ϕ dV − 2

∫
R3\�

∇ϕ · (ε − ε0)E0 dV

+ E0 ·
[∫

R3\�
(ε − ε0) dV + V�ε0

]
· E0, (A.1)

where the admissible potentials satisfy the boundary condition ϕ = E0 · x + a on the PEC
boundary, in order to satisfy n̂× (E0 −∇ϕ) = 0. Now consider the variation of the functional
at the minimum ϕ0, ignoring terms quadratic and higher in δϕ:

1

2
δJe = Je(ϕ0 + δϕ, E0) − Je(ϕ0, E0)

2

=
∫

R3\�
∇δϕ · ε∇ϕ0 dV −

∫
R3\�

∇δϕ · (ε − ε0)E0 dV

=
∫

R3\�
δϕ∇ · [ε(E0 − ∇ϕ0)] dV +

∮
∂�

n̂ · δϕε(E0 − ∇ϕ0) dS

−
∮

∂�

δϕn̂ · (ε0E0) dS. (A.2)

The last two integrals are identically zero since the variation δϕ must be zero on the PEC
surface in order to comply with the boundary condition. Since the first variation of the
functional should vanish at the extremum for all δϕ, the minimizing potential must satisfy
∇ · [ε(E0 − ∇ϕ0)] = 0, i.e. the electrostatic equation.

We now show that the minimum value is indeed minϕ∈Aϕ
Je(ϕ, E0) = Je(ϕ0, E0) = E0·p.

The functional can be written as

Je(ϕ0, E0) =
∫

R3\�
∇ϕ0 · ε∇ϕ0 dV − 2

∫
R3\�

∇ϕ0 · (ε − ε0)E0 dV

+ E0 ·
[∫

R3\�
(ε − ε0) dV + V�ε0

]
· E0

9
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=
∫

R3\�
∇ϕ0 · ε(−E0 + ∇ϕ0) dV +

∫
R3\�

E0 · (ε − ε0)(E0 − ∇ϕ0) dV

+
∫

R3\�
∇ϕ0 · ε0E0 dV + ε0|E0|2V�. (A.3)

Using integration by parts on the first integral implies∫
R3\�

∇ϕ0 · ε(−E0 + ∇ϕ0) dV

=
∫

R3\�
ϕ0∇ · [ε(E0 − ∇ϕ0)] dV +

∮
∂�

ϕ0n̂ · ε(E0 − ∇ϕ0) dV

= 0 +
∮

∂�

(E0 · x + a)n̂ · ε(E0 − ∇ϕ0) dV = E0 ·
∮

∂�

xn̂ · ε(E0 − ∇ϕ0) dS,

(A.4)

where we used the field equation ∇ · [ε(E0 − ∇ϕ0)] = 0, the boundary condition
ϕ0 = E0 · x + a on the PEC boundary and that the total charge on the PEC body is zero, i.e.∮
∂�

n̂ · ε(E0 − ∇ϕ0) dS = 0. In addition, we have∫
R3\�

∇ϕ0 dV = −
∮

∂�

n̂ϕ0 dS = −
∮

∂�

n̂x dS · E0 = −V�E0 (A.5)

since
∮
∂�

n̂x dS = ∫
�

∇x dV = V�I. Collecting the results, we find

Je(ϕ0, E0) = E0 ·
[∫

R3\�
(ε − ε0)(E0 − ∇ϕ0) dV +

∮
∂�

xn̂ · ε(E0 − ∇ϕ0) dS

]

= E0 · p. (A.6)

We finally consider the difference between the two functionals for different geometries, primed
and unprimed. We start by rewriting the functional as

Je(ϕ, E0) =
∫

R3\�
∇ϕ · ε∇ϕ dV − 2

∫
R3\�

∇ϕ · (ε − ε0)E0 dV

+ E0 ·
[∫

R3\�
(ε − ε0) dV + V�ε0

]
E0

=
∫

R3\�
(E0 − ∇ϕ) · ε(E0 − ∇ϕ) dV

+ 2
∫

R3\�
∇ϕ · ε0E0 dV + ε0|E0|2

[
−

∫
R3\�

dV + V�

]

=
∫

R3\�
(E0 − ∇ϕ) · ε(E0 − ∇ϕ) dV + ε0|E0|2

[
−

∫
R3\�

dV − V�

]
, (A.7)

where we used the fact that
∫

R3\� ∇ϕ dV = −V�E0, as shown previously. Even though this
expression involves infinite integrals, they cancel when looking at the difference between the
two functionals. Assume that the PEC bodies are in regions � and �′. We then have

Je(ϕ, E0) − J ′
e(ϕ

′, E0) =
∫

R3\�
(E0 − ∇ϕ) · ε(E0 − ∇ϕ) dV

−
∫

R3\�′
(E0 − ∇ϕ′) · ε′(E0 − ∇ϕ′) dV. (A.8)

10



J. Phys. A: Math. Theor. 42 (2009) 335403 D Sjöberg

Appendix A.2. Dual variational principle

The dual functional is

Ke(F , D0) =
∫

R3\�
(∇ × F ) · ε−1∇ × F dV − 2

∫
R3\�

(∇ × F ) · (
ε−1

0 − ε−1
)
D0 dV

− 2D0 · ε−1
0

∮
∂�

xn̂ · (D0 + ∇ × F ) dS

+ D0 ·
[
−

∫
R3\�

(
ε−1

0 − ε−1
)

dV + V�ε−1
0

]
D0, (A.9)

where the admissible potentials satisfy the boundary condition n̂ × ε−1(D0 + ∇ × F ) = 0.
In the following, we need the identity∮

∂�

n̂ × F dS =
∮

∂�

xn̂ · (∇ × F ) dV (A.10)

for arbitrary fields F . This is shown by the identity

(xn̂ · (∇ × F ))i = xin̂ · (∇ × F ) = n̂ · (xi∇ × F ) = n̂ · (∇ × (xiF ) − ∇xi × F )

= n̂ · (∇ × (xiF )) − n̂ · (x̂i × F ) = n̂ · (∇ × (xiF )) + x̂i · (n̂ × F )

(A.11)

and since
∮
∂�

n̂ · (∇ × (xiF )) dS = − ∫
R3\� ∇ · (∇ × (xiF )) dV = 0, the identity (A.10)

follows. When considering the dual magnetic functional Jm(ψ,H0), the corresponding
integral identity is

∮
∂�

n̂ψ dS = − 1
2

∮
∂�

x × (n̂ × ∇ψ) dS for arbitrary ψ , which is proven
with similar techniques in [1]. We also make frequent use of the integration by parts formula
(remember that the unit vector n̂ points out of the volume �)∫

R3\�
(∇ × A) · B dV =

∫
R3\�

A · (∇ × B) dV −
∮

∂�

n̂ · (A × B) dS. (A.12)

Now consider the variation of the functional at the minimum F 0, ignoring terms quadratic and
higher in δF :

1

2
δKe = Ke(F 0 + δF , D0) − Ke(F 0, D0)

2
=

∫
R3\�

(∇ × δF ) · ε−1∇ × F 0 dV

−
∫

R3\�
(∇ × δF ) · (

ε−1
0 − ε−1

)
D0 dV − D0 · ε−1

0

∮
∂�

xn̂ · (∇ × δF ) dS

=
∫

R3\�
δF · [∇ × (ε−1(D0 + ∇ × F 0))] dV

−
∮

∂�

n̂ · [δF × ε−1(D0 + ∇ × F 0)] dS −
∫

R3\�
δF · (∇ × ε−1

0 D0
)

dV

+
∮

∂�

n̂ · (
δF × ε−1

0 D0
)

dS −
∮

∂�

n̂ × δF dS · ε−1
0 D0. (A.13)

The second integral is identically zero since n̂ × ε−1(D0 + ∇ × F ) = 0 on the PEC
boundary. The third is zero since ε−1

0 D0 is constant and the last two integrals cancel each
other. The only integral remaining is the first one, and since we should have δKe = 0 for
any δF at the extremum, we see that the minimizing potential must satisfy the equation
∇ × (ε−1(D0 + ∇ × F 0)) = 0, i.e. the electrostatic equation.

11
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We now show that the minimum value is indeed minF∈AF
Ke(F , D0) = Ke(F 0, D0) =

−D0 · ε−1
0 p. The functional can be written as

Ke(F 0, D0) =
∫

R3\�
(∇ × F 0) · ε−1∇ × F 0 dV − 2

∫
R3\�

(∇ × F 0) · (
ε−1

0 − ε−1
)
D0 dV

− 2D0 · ε−1
0

∮
∂�

xn̂ · (D0 + ∇ × F 0) dS

+ D0 ·
[
−

∫
R3\�

(
ε−1

0 − ε−1
)

dV + V�ε−1
0

]
D0

=
∫

R3\�
(∇ × F 0) · ε−1(D0 + ∇ × F 0) dV

−
∫

R3\�
(D0 + ∇ × F 0) · (

ε−1
0 − ε−1

)
D0 dV

−
∫

R3\�
∇ × F 0 dV · ε−1

0 D0

− 2D0 · ε−1
0

∮
∂�

xn̂ · (D0 + ∇ × F 0) dS + V�D0 · ε−1
0 D0. (A.14)

The first integral is∫
R3\�

(∇ × F 0) · ε−1(D0 + ∇ × F 0) dV =
∫

R3\�
F 0 · [∇ × (ε−1(D0 + ∇ × F 0))] dV

−
∮

∂�

n̂ · [F 0 × ε−1(D0 + ∇ × F 0)] dS = 0, (A.15)

which is zero due to the field equation ∇ × (ε−1(D0 + ∇ × F 0)) = 0 and the boundary
condition n̂ × (ε−1(D0 + ∇ × F 0)) = 0. The third integral is

−
∫

∂�

∇ × F 0 dV =
∮

∂�

n̂ × F 0 dS =
∮

∂�

xn̂ · (∇ × F 0) dS

=
∮

∂�

xn̂ · (−D0 + D0 + ∇ × F 0) dS

= −
∮

∂�

xn̂ dS · D0 +
∮

∂�

xn̂ · (D0 + ∇ × F 0) dS

= −V�D0 +
∮

∂�

xn̂ · (D0 + ∇ × F 0) dS. (A.16)

Collecting the results, we find

Ke(F 0, D0) = −
∫

R3\�
(D0 + ∇ × F 0) · (

ε−1
0 − ε−1)D0 dV

− D0 · ε−1
0

∮
∂�

xn̂ · (D0 + ∇ × F 0) dS = −D0 · ε−1
0 p. (A.17)

We finally consider the difference between the two functionals for different geometries, primed
and unprimed. We start by rewriting the functional as (using ppec = ∮

∂�
xn̂ ·(D0 +∇×F 0) dS

for brevity)

Ke(F , D0) =
∫

R3\�
(∇ × F ) · ε−1∇ × F ) dV − 2

∫
R3\�

(∇ × F ) · (
ε−1

0 − ε−1
)
D0 dV

−2D0 · ε−1
0 ppec + D0 ·

[
−

∫
R3\�

(
ε−1

0 − ε−1
)

dV + V�ε−1
0

]
· D0

12
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=
∫

R3\�
(D0 + ∇ × F ) · ε−1(D0 + ∇ × F ) dV

−2
∫

R3\�
∇ × F dV · ε−1

0 D0 − 2D0 · ε−1
0 ppec + ε−1

0 |D0|2
[
−

∫
R3\�

dV + V�

]

=
∫

R3\�
(D0 + ∇ × F ) · ε−1(D0 + ∇ × F ) dV

+ ε−1
0 |D0|2

[
−

∫
R3\�

dV − V�

]
, (A.18)

where we used that
∫

R3\� ∇ × F dV = V�D0 − ppec, which was shown previously. The
difference between the two functionals can then be written as

Ke(F , D0) − K ′
e(F

′, D0) =
∫

R3\�
(D0 + ∇ × F ) · ε−1(D0 + ∇ × F ) dV

−
∫

R3\�′
(D0 + ∇ × F ′) · (ε′)−1(D0 + ∇ × F ′) dV. (A.19)

The results (A.8) and (A.19) are identical for the magnetic functionals Jm(ψ,H0) and
Km(A,B0), respectively. For instance, we have

Km(A,B0) − K ′
m(A′,B0) =

∫
R3\�

(B0 + ∇ × A) · μ(B0 + ∇ × A) dV

−
∫

R3\�′
(B0 + ∇ × A′) · μ′(B0 + ∇ × A′) dV. (A.20)
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